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Abstract: Under the challenges of global population growth and climate change, modern agriculture 
is under increasing pressure, and intelligent and sustainable management methods are urgently needed 
to balance the growth of food demand and environmental protection. Based on the actual planting of 
cultivated land and the growth law of crops in specific regions, this paper formulates the optimal 
planting strategy for crops in the next few years. First, data preprocessing is carried out to estimate 
the unit price of crop sales and analyze the relationship between planting area and total sales; secondly, 
single-objective optimization analysis is carried out based on historical data, an optimization model 
is constructed, and a genetic algorithm is used to solve it, giving the optimal planting strategy for 
2024-2030 to maximize agricultural benefits when the expected sales volume is stable. Then, a single 
sensitivity analysis is used to find out the key variables affecting planting benefits and their expected 
change rates; then a multi-sensitivity analysis is used to calculate the planting data of crops in each 
year within a specific floating range, and a Monte Carlo simulation is used to evaluate the 
comprehensive impact of uncertain parameters; finally, the obtained parameter values are used to 
simulate the planting strategy model to obtain the optimal planting plan for 2024-2030. In addition, 
assuming that sales volume is linearly related to variables such as average sales price and planting 
cost, the sales volume of different crops is predicted based on the linear regression model. The 
correlation coefficient analysis shows that the sales price is negatively correlated with sales volume, 
and the planting area is positively correlated with sales volume. The optimal planting plan is obtained 
with the help of the prediction model and compared with the above plan. The results show that the 
total profit fluctuates greatly from 2024 to 2030, which is speculated to be related to the parameter 
selection. 

1. Introduction 
As a major agricultural country, China has to promote rural economic development as the key to 

achieving rural prosperity. Improving production methods and introducing modern technologies 
under the rural revitalization strategy can inject vitality into rural economic growth. Agricultural 
development in a village in the mountainous area of North China faces unique challenges. Due to 
geographical location and climate constraints, most cultivated land is only planted with one crop a 
year. The village has 1,201 acres of cultivated land scattered in 34 different plots, with various plot 
types and suitable for planting different crops. There are also 20 greenhouses (including 16 ordinary 
greenhouses and 4 smart greenhouses). Ordinary greenhouses can plant two crops a year, and smart 
greenhouses can automatically adjust the temperature to achieve winter planting and two vegetable 
plantings a year. However, there are restrictions on crop planting. It is necessary to avoid repeated 
cropping and yield reduction, and crops cannot be planted continuously in the same plot or 
greenhouse. It is also necessary to maintain soil fertility and plant legumes at least once in each plot 
within three years. In this context, it is necessary to study the optimal planting strategy for crops and 
formulate a land planting plan that takes into account seasonality, soil fertility, crop diversity and 
economic benefits to increase production, increase income and ensure the sustainable development 
of agriculture. 
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Existing research has formed a multi-dimensional methodological system in the field of crop 
planting strategy optimization. [1] proposed a planting structure model based on spatial optimization, 
and provided a new paradigm for regional scale planting planning through the framework of 
geographic information system and economic-environmental benefit balance. [2] constructed a multi-
objective optimization model that includes dynamic changes in molecular concentration, paying 
special attention to the synergistic mechanism of crop rotation cycle and quality management, but its 
constraint setting is still limited to the idealized agricultural system. In terms of algorithmic 
innovation, [3] developed an improved real genetic algorithm, which effectively enhances the 
efficiency of solving multiple cropping combinations. Meanwhile, [4] conducts research on 
sustainable crop planning in mountainous villages using linear programming, providing practical 
references for optimizing planting strategies under specific topographical conditions. It is worth 
noting that [5] used constraint programming method to deal with the planting layout problem for the 
first time, and its spatial constraint expression mechanism provided a more accurate solution for the 
heterogeneity of plots. 

However, existing research still has three major limitations: first, most models use static parameter 
settings, which are difficult to adapt to the dynamic scenarios of climate change and technological 
progress; second, the goal of maximizing economic benefits is still dominant, and the integration of 
environmental and social benefits mostly remains at the level of indicator superposition; third, 
algorithm optimization focuses on improving computational efficiency, and lacks in-depth analysis 
of the spatiotemporal coupling characteristics of planting systems. This provides a research direction 
for building a new generation of planting decision models that integrate dynamic parameter update 
mechanisms, multi-objective trade-off strategies, and intelligent optimization algorithms. 

2. Model building and solving 
2.1. Data preprocessing and visualization 

The volatility of sales price is a key consideration when analyzing the crop market. The lowest or 
highest sales price cannot effectively represent the market, so this section adopts the method of 
calculating the average sales price. First, the planted area and the relevant data collected in the "2023 
crop planting situation" and "2023 statistics" are preprocessed, and the table containing the planted 
area and the table containing the sales price information are integrated. Finally, numerical calculations 
are performed to calculate the average sales price of various crops. 

This section classifies the types of crops based on data processing, and conducts data visualization 
analysis on the planting area and total sales volume. The relevant analysis results are shown in Figures 
1, 2, and 3. 

 
Figure 1 Area under cultivation of different crops. 

As shown in Figure 1, wheat has the largest planting area, reaching 222 mu. Millet ranks second 
with 185 mu. The planting areas of soybeans and corn are both over 100 mu, which shows their 
importance in terms of scale. There is no obvious difference in the planting areas of other crops. The 
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horizontal axis from left to right is Broad Bean , Chinese Cabbage, Pumpkin, Potato, Chinese 
Cabbage, Barley, Oat, Green Cabbage, Small Chinese Cabbage, Elm Mushroom, Rice, Rape, 
Climbing Bean, Corn, Lettuce, White Mushroom, White Radish, Hollow Heart Radish, Sweet Potato, 
Red Bean, Green Bean, Woolly Milk Vetch, Bean Sprout, Celery, Eggplant, Wheat Bran, Buckwheat, 
Cauliflower, Spinach, Tomato, Grain Amaranth, Job's Tears, Mung Bean, Pepper, Green Pepper, 
Mushroom, Sorghum, Celery, Yellow Heart Vegetable, Cucumber, Soy Bean, Black Bean. 

 
Figure 2 Planting season and total planted area. 

As shown in Figure 2, the main planting mode is single-season planting, with a planting area of 
1,134 mu, while the planting areas in the first and second seasons are 86.2 mu and 81.4 mu 
respectively, indicating that multi-season planting is not common in the area. Therefore, it is possible 
to consider optimizing crop varieties and planting techniques in single-season planting, while 
enhancing soil fertility and crop resistance through methods such as rotation and intercropping in 
multi-season planting. 

2.2. Optimal eye for planting crops based on genetic algorithm 
Linear programming is the optimization of a set of decision variables under a series of linear 

constraints to achieve the maximum or minimum value of the objective function. It usually contains 
three core elements: decision variables, constraints, and objective functions. Decision variables are 
unknowns, which are generally continuous and non-negative values; constraints are linear inequalities 
or equations that limit the range of decision variables, reflecting the limitations in reality; the objective 
function is a linear combination that defines the quantity to be maximized or minimized. Linear 
programming is widely used and can efficiently and stably solve practical problems such as 
production planning, transportation scheduling, and resource allocation, and the model is easy to 
understand and expand. By establishing and solving linear programming models, decision makers 
can find the optimal solution under the conditions that all constraints are met. The construction of a 
target optimization model requires the "three determination" steps: first find the known variables in 
the problem and determine the decision variables; then determine the objective function to be solved; 
and finally determine the constraints that each variable must meet. 

The decision variable designed in this paper is the area (unit: mu) of the crop planted in the plot in 
the season. In order to solve the problem that the crop yield exceeds the market demand, resulting in 
the unsalable excess and waste of resources, the planting plan is optimized. The goal is to optimize 
the planting plan to maximize the total profit from 2024 to 2030, so the following objective function 
is established: 

 ( ) ( )max ijk ijk ijk ijk ijk ijk ijk
i j k i j k

Z S x C x S C x= ∑∑∑ × − × = ∑∑∑ − ×  (1) 
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Among them, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 represents the sales price of the ith plot of land planted with the kth crop in the 
jth season (yuan/jin), 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 represents the planting cost of the ith plot of land planted with the kth crop 
in the jth season (yuan/mu), and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 represents the area (mu) of the ith plot of land planted with the 
kth crop in the th season. 

The excess will be sold at a price reduction of 50% of the 2023 sales price. The established 
objective function is as follows: 

 ( ) ( )max 0.5ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk
i i k

Z S x C x S x C x S S C= ∑∑∑ × − × + × − × × × − ×  (2) 

Constraints 
Plot area constraints: The planting area of each plot cannot exceed the total area of the plot. 

 Area ,ijk i
j k

x i∀∑∑ ≤  (3) 

Among them, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 represents the total area of the ith plot. 

 0, , j, kijkx i∀≥  (4) 

Non-negativity constraint: The planting area cannot be negative. 

 0, , j, kijkx i∀≥  (5) 

Legume crop planting requirements: Each plot of land must plant legume crops at least once within 
three years. 

 Σ 1,k ikl i∀≥  (6) 

Where 𝑙𝑙𝑖𝑖,𝑘𝑘 is a binary variable indicating whether the ith plot is planted with legume crops. 
Minimum area constraint: 

 0.5 , , ,ijk ix Area i j k∀≥ ×  (7) 

Matching yields to sales: Crop yields cannot exceed expected sales 

 MaxSales , , j, kijk jkx i∀≤  (8) 

Among them, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗 represents the expected sales volume of the crop in the season (jin). 
Based on the planning model of the above objective function and constraints, a genetic algorithm 

is used to solve the problem. The genetic algorithm simulates the selection of biological individuals 
with different characteristics by nature and the phenomena of reproduction, crossover and mutation 
that occur in the genetic process between individuals in the biological population. It maintains a set 
of candidate solutions in each iteration, selects the best performing individuals from the solution 
group according to different optimization indicators, and uses genetic operators to select, crossover 
and mutate these individuals to generate a new generation of candidate solutions. The above process 
is repeated until the population reaches the target state. 

The genetic algorithm allows the optimal planting plan to be identified from multiple feasible 
solutions, while taking into account the physical characteristics of the plot, the crop growth cycle, 
changes in market demand and the planting cost. The parallel selection method and the arithmetic 
crossover method are used for the selection operator and the crossover operator operation respectively. 
The fitness function of the algorithm evaluates the planting plan of each individual based on the total 
profit. Through genetic operations such as selection, crossover and mutation, the algorithm can 
continuously iterate the population and generate individuals that are increasingly adapted to the 
environment, that is, planting plans, until the termination condition is met. 

In genetic algorithms, the fitness function is a mathematical representation of the degree to which 
an individual adapts to the environment. Individuals with high fitness will have a better chance of 
reproducing the next generation. Usually, individuals with fitness values higher than the average 
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fitness value of the group are crossover, while individuals with fitness values lower than the average 
fitness value are mutated, thereby improving the average fitness value of the group and the 
performance of the best individuals from generation to generation. The goal of this article is to 
maximize the total profit, so the fitness function will be designed to reflect the economic benefits of 
each planting plan. 

 ( ) ( )
years crops years cropsfields fields

1 1 1 1 1 1
Fitness(individual) Fitness(individual)

N N N NN N

ijk ijk ijk ijk ijk ijk ijk ijk
i j k i j k

P Y C x P Y C x
= = = = = =

= ∑ ∑ ∑ ⋅ − ⋅ = ∑ ∑ ∑ ⋅ − ⋅  (9) 

Among them, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  represents the number of plots, 𝑁𝑁𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  represents the number of years, 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐represents the number of crop types, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 represents the unit sales price of the kth crop in the 
jth year, 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected yield of the kth crop in the jth year, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 represents the unit 
planting cost of the kth crop in the jth year, and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 represents the area of the kth crop planted in the 
jth year on the ith plot. 

In order to keep the individuals with the best fitness to the next generation as much as possible, 
the optimal individual preservation method is used to perform the survival of the fittest operation, 
that is, the individual with the highest fitness in the current population does not participate in the 
crossover operation and mutation operation, but is used to replace the individual with the lowest 
fitness in the current generation population after genetic operations such as mating and mutation. The 
optimal individual preservation method can be regarded as part of the selection operation. The 
implementation of this strategy can ensure that the best individuals obtained so far will not be 
destroyed by genetic operations such as mating and mutation. It is an important guarantee for the 
convergence of the genetic algorithm. After the fitness function is established, the operation from 
defining fitness and individual classes, defining fitness functions, genetic algorithm operations and 
the final results is realized. After the algorithm terminates, the individual with the highest fitness in 
the current population is extracted as the optimal solution and the results are visualized. In view of 
the different areas of various types of plots, the area of all plots is regarded as 100 mu during the 
calculation, and in the subsequent actual calculation, the actual area of each plot is multiplied by a 
certain proportional coefficient. The visualization result is shown in Figure 3, 4 below. 

 
Figure 3 The first crop in the first year 

35



 

 
Figure 4 Second crop planting in the first year. 

The results of excess unsalable crops and waste are shown in Table 1. According to calculations, 
the expected total profit of crops from 2024 to 2030 is 59313432.5 when excess unsalable crops and 
waste are caused. 

Table 1 Result table for case 1 

 Plot Name Soybean Black Bean Red Bean Mung Bean 

Season 1 

A1 0 68.17 55.16 7.267 
A2 10.07 38.44 17.99 26.87 
A3 26.72 34.65 23.28 12.64 
A4 71.59 70.23 52.9 7.669 
A5 0 68.17 55.16 7.267 

The results of selling the excess at 50% of the 2023 sales price are shown in Table 2 below. It is 
calculated that when the excess is sold at 50% of the 2023 sales price, the expected total profit of the 
crops from 2024 to 2030 is 30003581.25 

Table 2 Result table for case 2 

 Plot Name Soybean Black Bean Red Bean Mung Bean 

Season 1 

A1 55.92 42.26 29.75 64.7 
A2 32.28 46.56 25.54 56.19 
A3 9.413 24.24 52.05 22.82 
A4 4.015 19.84 0 39.47 
A5 53.26 49.21 14.53 41.31 

After the model was established and solved, a series of planting plans were obtained. These results 
were analyzed in depth to verify the effectiveness of the model. By comparing the planting area of 
different crops in different plots with historical data, it was found that the model results were basically 
consistent with the actual planting situation, but more optimized. For example, the optimization 
model increased the planting area of wheat and corn, which is consistent with the characteristics of 
high yield and high market demand of these two crops. By simulating different market conditions and 
climate change scenarios, it was found that the model can adapt to these changes and give 
corresponding adjustment suggestions. For example, in the case of increased market demand, the 
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planting strategy can be quickly adjusted to increase the planting area of the corresponding crops. 

2.3. Sensitivity analysis 
Evaluate the key variables that affect the total revenue of crop planting strategies, including sales 

growth rate, per-acre yield change rate, planting cost growth rate, and sales price change rate. 
According to different growth rate ranges, such as the sales growth rate of wheat and corn between 
5% and 10%, the sales change rate of other crops between -5% and +5%, the per-acre yield change 
rate between -10% and +10%, the annual planting cost growth rate is fixed at 5%, and the sales price 
change rate of different crops. 

For each variable, calculate the sensitivity coefficient, that is, the ratio of the percentage change in 
revenue to the percentage change in the variable, and calculate the sensitivity of the total revenue to 
each parameter. The results are shown in Table 3 below: 

Table 3 Sensitivity analysis 

Sensitivity 
analysis 

Flat dry 
land 

Terraced 
Fields Hillside irrigated 

land 
Ordinary 

greenhouse 
Smart 

greenhouse 
Sales 1.15 1.15 1.15 1.05 1.05 1.05 

Yield per mu 0.21 0.21 0.21 0.13 0.68 0.68 
Planting costs -0.005 -0.19 -0.19 -0.19 -0.07 -0.07 

Sales Price 0.17 0.17 0.03 0.17 0.34 0.34 
Based on the changes in multiple parameters such as crop planting costs, per-acre yield, expected 

sales volume, and sales price in 2023, the crop planting data for each year from 2024 to 2030 are 
calculated within a certain floating range, as shown in Table 4 below. 

Table 4 Forecast Change Table 

Planting 
cost Soybean Black 

Bean 
Red 
Bean 

Mung 
Bean 

Climbing 
beans Wheat 

2023 400 500 400 350 415 800 
2024 384 411 365 343 345 438 
2025 369 393 359 353 331 419 
2026 382 401 364 370 321 417 

The Monte Carlo method randomly draws parameter values in the simulation by defining a range 
of variation for each variable. For each set of parameter combinations, the planting strategy model is 
run to predict its impact on total revenue. This process is repeated thousands of times, and the 
resulting data is collected and analyzed to assess the sensitivity of each parameter to revenue. 

In the simulation of the crop planting strategy, the total revenue 𝑃𝑃 can be expressed as sales 
revenue minus total costs: 

 
1

1 ( ) ( )i i i i i
i n

P i n R X Ci P R X C
=

= ∑ = ⋅ − = ∑ ⋅ −  (10) 

Where n is the number of crop types, 𝑅𝑅𝑖𝑖 is the unit sales price of the i-th crop, 𝑋𝑋𝑖𝑖 is the sales 
volume of the i-th crop, and 𝐶𝐶𝑖𝑖 is the total cost of the i-th crop. 

The simulation process can be represented as a loop, where each iteration represents a different 
scenario or parameter combination: 

 
2

 1   
~ ( , )

  
 

k

k k

for k to N do
X N
P with X
end for

µ σ

=

 (11) 

Given different growth rate intervals, the Monte Carlo simulation method is used to generate the 
results shown in Table 5 below 
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Table 5 The best planting plan for various crops in 2024 

Unit: mu Soybean Black Bean Red Bean Mung Bean Climbing beans Wheat 
Plot 1 1.60 1.64 0.47 0.93 0.99 1.76 
Plot 2 0.80 1.07 0.58 1.31 2.03 1.64 
Plot 3 1.53 1.78 0.44 0.76 0.52 1.23 
Plot 4 0.52 0.02 0.68 0.48 1.15 1.47 
Plot 5 1.59 1.14 1.10 2.17 0.90 0.80 

Through Monte Carlo simulation, a probability distribution of total revenue was obtained. The 
simulation results showed that sales price and per-acre yield were the two most sensitive parameters 
affecting total revenue, while the increase in planting costs had a relatively small impact on total 
revenue, verifying the consistency of the model prediction with historical data and proving the 
effectiveness of the model when simulating different market and climate scenarios. In addition, the 
sensitivity analysis revealed the risks faced by the planting strategy, prompting this paper to propose 
risk mitigation measures, such as crop diversification and market diversification strategies. 

2.4. Complementary effects of different crops based on regression model 
Based on the analysis of substitution and complementarity effects between different crops through 

regression models. For example, if the planting area of wheat increases, it may have a negative impact 
on the market demand for corn, or it may increase the demand for bean crops. Using the linear 
regression model, the total sales volume of crops is predicted. 

Assuming that there is a linear relationship between the total sales volume y and x the average unit 
price, planting cost and sales volume, a multivariate linear regression can be established, which is 
expressed as 

 0 1 1 2 2y X Xβ β β= + + +  (12) 

Among them, 𝑦𝑦 is the total sales of crops, 𝑋𝑋1 is the average sales price, 𝑋𝑋2 is the planting cost. 𝛽𝛽0 
is the intercept term, 𝛽𝛽1 and 𝛽𝛽2 is the coefficient to be estimated, ϵ is the error term. 

Secondly, the missing values in the data were processed, and the missing data were filled with the 
average value of each variable. 20% of the data was reserved as the test set, and the model was trained 
using the training set data. In order to evaluate the performance of the model, the model's score 𝑅𝑅2 
was calculated. After the training was completed, the model was used to predict the total sales of the 
feature variables in the test set. The results are shown in Table 6 below: 

Table 6 Forecast total sales 

Actual total sales/jin Forecast total sales/jin 
813.1616971 18941.148 
1058.868587 19727.94488 
27873.57748 24338.28738 
100940.0916 24245.05934 
23448.06138 24291.51714 

In order to more intuitively show the degree of fit between the prediction results and the actual 
data, the comparison results between the actual value and the predicted value are shown in Figure 5: 

The calculation results are β_1=-196.85936917 and β_2=-2.13803559. The results show that there 
is a negative correlation between the average sales price, planting cost and the target variable "total 
sales volume", that is, an increase in the average sales price and planting cost will lead to a decrease 
in total sales volume. This result can also be verified based on actual experience; ϵ= 25799.45, that 
is, when the values of all characteristic variables are 0, the predicted value of total sales volume; the 
determination coefficient is R^2=0.62 , which can be considered to explain 62.38% of the variability 
of total sales volume. 
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Figure 5 Comparison chart of actual value and predicted value. 

After completing the construction of the multivariate linear regression model, the significance test 
of the model was performed. In the latest ordinary least squares (OLS) regression analysis, the 
coefficient of determination (R-squared) was as high as 0.941, which means that the model can 
explain about 94.1% of the variability of the dependent variable, and the adjusted coefficient of 
determination (Adj. R-squared) is also similar, which shows that the model is not overfitting and its 
fit is reliable; secondly, the F statistic is 776.7, which is a very high value, further confirming that at 
least one explanatory variable in the model has a significant effect on the dependent variable. The 
corresponding F statistic p-value is close to 0, providing clear evidence to reject the null hypothesis 
that all coefficients in the model are equal to zero. 

The residual degrees of freedom (Df Residuals) of the model is 97, while the model degrees of 
freedom (Df Model) is 2, indicating that two explanatory variables are used to build the model. The 
Durbin-Watson statistic is 2.346, which is close to 2 and is generally considered to be an ideal state 
without autocorrelation, indicating that there is no obvious autocorrelation between the residuals and 
the error term of the model is appropriate. 

In the initial construction stage of the model, the degree of fit of the model to the data was evaluated, 
proving that there is a certain relationship between the variables. However, this parameter only proves 
the explanatory power of the variables in the model, and does not reveal the specific relationship 
between the variables in detail. 

This paper explores the correlation between sales volume, planting cost, per mu yield and sales 
price, and analyzes how these relationships affect model predictions. The Pearson correlation 
coefficient is used to measure the linear relationship between continuous variables. The calculation 
of the correlation coefficient shows that the average unit price is negatively correlated with the total 
sales volume (r=-0.18), indicating that as the price increases, the sales volume will decrease; the 
planting area is strongly positively correlated with the total sales volume (r=0.58), indicating that as 
the planting area increases, there is a 58% probability that the total sales volume will also increase; 
and the sales volume is negatively correlated with the planting cost to a certain extent (r=-0.26), 
reflecting that the price increase caused by the cost increase has suppressed the sales volume. 

After establishing the linear programming model and correlation analysis, the sales volume of 
crops is predicted, and a function is defined to take the planting cost as input and calculate the sales 
volume based on the assumed proportional relationship between the sales price and the planting cost. 
Furthermore, another function is defined to calculate the expected profit based on the predicted sales 
volume and planting cost. By looping through all possible planting costs and the predicted profit 
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under each cost, the planting cost with the highest expected profit and the corresponding profit value 
are finally output. 

In comparison, the regression model shows greater volatility in profits between 2024 and 2030, 
which may be due to several key factors: First, the model may be more sensitive to market dynamics 
and external conditions. For example, climate affects the growth and development of crops in many 
ways. If the climate conditions in the area where the crops are located are favorable, it will help the 
growth of crops; on the contrary, it will hinder their growth. Second, the uncertainty of parameter 
estimation may cause the model output to be overly sensitive to small changes in input data, thereby 
amplifying the volatility of profits. In addition, the model takes into account more external risk 
factors,such as sudden changes in market demand and policy changes, which may lead to instability 
in the forecast results in the model. 

3. Conclusion 
In view of the resource and environmental pressure and food security needs faced by modern 

agriculture, this paper constructs a crop planting strategy planning model based on data-driven and 
intelligent optimization. The model integrates multi-dimensional data such as sales volume, cost, 
yield and price, and combines linear regression analysis and correlation analysis to achieve dynamic 
prediction and optimization of the planting plan from 2024 to 2030. The research results show that 
the model successfully maximizes agricultural benefits under the premise of stable expected sales 
volume through genetic algorithm solution and multi-scenario simulation. Its advantages are reflected 
in three aspects: first, the economic benefits and soil sustainability requirements are taken into 
account through a simple architecture design; second, the risk resistance of the scheme is verified by 
sensitivity analysis and Monte Carlo simulation; third, the planning accuracy is improved by fine 
matching of plot characteristics and crop growth cycle. However, the model still has the limitations 
of idealized assumptions (such as fixed growth rate setting) and static framework. In the future, the 
model can be further enhanced to adapt to technology iteration and market fluctuations by introducing 
a dynamic parameter update mechanism, developing parallel computing modules, and building a 
multi-objective optimization system, providing a more forward-looking support tool for smart 
agricultural decision-making. 
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